Трехмерная лента мебиуса. Кто и когда ее открыл? Лента Мёбиуса в архитектуре

Лента Мебиуса – загадка современности

Трехмерная лента мебиуса. Кто и когда ее открыл? Лента Мёбиуса в архитектуре

Волшебная, нереальная – это все эпитеты, которыми можно наградить ленту Мебиуса. Одну из самых больших загадок современности. Возможно, именно лента Мебиуса скрывает в себе загадки взаимодействия всего существующего в нашей Вселенной. У этой фигуры есть загадочные свойства и вполне реальные области применения.

Лента Мебиуса является одной из самых необыкновенных геометрических фигур. Несмотря на ее необычность, ее легко сделать в домашних условиях.

Лента Мебиуса – это трехмерная неориентируемая фигура с одной границей и стороной. Этим она уникальна и отлична от всех других предметов, которые могут встретиться в повседневной жизни.

Ленту Мебиуса также называют листом Мебиуса и поверхностью Мебиуса. Она относится к топологическим объектам, то есть объектам непрерывным.

Такие объекты изучает топология – наука, исследующая непрерывность среды и пространства.

Интерес вызывает уже само открытие ленты. Два математика, несвязанных между собой, открыли ее в одном и том же 1858 году. Этими открывателями были Август Фердинанд Мебиус и Иоганн Бенедикт Листинг.

Условно различают ленты по способу сворачивания: по часовой стрелке и против часовой стрелки. Их еще называют правая и левая. Но различить «на глаз» вид ленты невозможно.

Сделать такую фигуру чрезвычайно просто: нужно взять ленту ABCD. ее так, чтобы соединить точки A и D, В и С, склеить соединенные концы.

Некоторые считают, что эта загадочная геометрическая фигура – прообраз перевернутой восьмерки-бесконечности, на самом деле это неверно. Этот символ был введен для использования намного раньше, чем была открыта лента Мебиуса. Но сходность смысла этих фигур определенно есть. Мистики называют ленту Мебиуса символом двойственного восприятия единого.

Лента Мебиуса словно говорит о взаимопроникновении, взаимосвязанности и бесконечности всего в нашем мире. Недаром, ее часто используют в качестве эмблем и товарных знаков. Например, международный символ переработки выглядит как лента Мебиуса.

Лента Мебиуса может быть также своеобразной иллюстрацией некоторых явлений в природе, например, круговорота воды.

Лента Мебиуса имеет характерные свойства, они не меняются, если ленту сжимать, комкать или резать вдоль.

К этим свойствам относятся:

  • Односторонность. Если взять ленту Мебиуса и начать закрашивать в любом ее месте и направлении, то постепенно вся фигура будет закрашена целиком, при этом фигуру не нужно будет переворачивать.
  • Непрерывность. Каждую точку этой фигуры можно соединить с другой ее точкой, при этом ни разу не выходя за края ленты.
  • Двусвязность (или двумерность). Лента остается цельной, если резать ее вдоль. Из нее не получатся в этом случае две разные фигуры.
  • Отсутствие ориентированности. Если представить, что человек мог бы идти по этой фигуре, то при возвращении в точку начала путешествия, он бы превращался в свое отражение. Путешествие по листу бесконечности могло бы продолжаться вечно.

Если взять ножницы и немножко поколдовать над этой загадочной поверхностью, то получится создать дополнительные необычные фигуры. Если резать ее вдоль, по линии, удаленной от краев на равное расстояние, то получится закрученная «Афганская лента».

Если полученную ленту разделить вдоль, посередине, то образуются две ленты, взаимопроникающие друг в друга. Если положить друг на друга несколько полосок и соединить в ленту Мебиуса, то если такую фигуру развернуть, снова получится «Афганская лента».

Если разрезать ленту Мебиуса с тремя или большим количествам полуоборотов, то получатся кольца, называющиеся парадромными.

Если склеить вместе две ленты Мебиуса вдоль границ, то выйдет другая удивительная фигура – бутылка Кляйна, но ее нельзя сделать в обычном трехмерном пространстве.

Если сгладить некоторые грани листа Мебиуса, то выйдет невозможный треугольник Пенроуза. Это плоский треугольник-иллюзия, когда смотришь на него, он кажется объемным.

Лист Мебиуса – неиссякаемый источник для творчества писателей, художников и скульпторов. Его упоминание часто встречается в фантастической и мистической литературе.

На его свойствах основывались художественные вымыслы о возникновении Вселенной, устроенности загробной жизни, передвижении во времени и пространстве.

Лист Мебиуса упоминали в своих произведениях Артур Кларк, Владислав Крапивин, Хулио Кортасар, Харуки Мураками и многие другие.

Известным художником Эшером был создан ряд литографий с использованием ленты. На наиболее известной его работе муравьи ползут по листу Мебиуса.

Свойства ленты Мебиуса позволят показать интересные фокусы. Рассмотрим один из самых известных. Подвешиваются две ленты Мебиуса из калийной селитры, маг касается зажженной сигаретой до средней линии каждой из них.

Разгоревшееся пламя удлинит первую ленту, а вторую превратит в две, связанные друг с другом.В форме ленты Мебиуса сделан популярный аттракцион «Американские горки».

Часто используют эту геометрическую фигуру ювелиры при создании дизайна драгоценностей.

Ленту Мебиуса широко применяют в науке и промышленности. Она является источником для множества научных исследований и гипотез. Существует, например, теория, что ДНК – это часть листа Мебиуса.

Исследователи в области генетики уже научились разрезать одноцепочную ДНК так, чтобы получить из нее ленту Мебиуса. Физики говорят о том, что оптические законы базируются на свойствах листа Мебиуса.

Например, отражение в зеркале – это своего рода передвижение во времени по аналогичной траектории. Есть научная гипотеза о том, что Вселенная – это гигантская лента Мебиуса.

В начале 20 века Никола Тесла изобрел резистор Мебиуса, который противостоит потоку электроэнергии, не вызывая при этом электромагнитных помех. Он состоит из двух проводящих поверхностей, которые скручены на 180 ° и образуют ленту Мебиуса.

Полоса ленточного конвейера (транспортирующей машины непрерывного действия) сделана в форме ленты Мебиуса. Такая поверхность позволяет увеличить срок использования ленты, так как ее изнашивание будет происходить равномерно. Используют форму ленты Мебиуса и при записи на непрерывную пленку.

Лист Мебиуса применялся в матричных принтерах для продления срока годности красящей ленты.

На основе ленты Мебиуса создано абразивное кольцо в механизмах для заточки, работает автоматическая передача.

В настоящее время многие изобретатели пользуются свойствами данной ленты для проведения экспериментов и создания новых устройств.

Лента Мебиуса продолжает вызывать стойкий интерес, не только у математиков и изобретателей, но и у обычных людей. Она вдохновляет деятелей искусства на создание загадочных произведений и фантастических теорий.

Эксперименты с этой интересной фигурой – увлекательное занятие, как для взрослого, так и для ребенка. Ее свойства нашли свое применение в науке, технике и в быту.

Лента Мебиуса – это занимательная математическая загадка, скрывающая в себе смысл идеалистического понимания устройства Вселенной, ее воздействие на нашу жизнь можно изучать бесконечно.

Источник: https://calculator888.ru/blog/raznoe/lenta-mebiusa.html

Что такое Лента Мебиуса?

Трехмерная лента мебиуса. Кто и когда ее открыл? Лента Мёбиуса в архитектуре
Лента Мебиуса, которую также называют петлей, поверхностью или листом, – это объект изучения такой математической дисциплины, как топология, исследующей общие свойства фигур, сохраняющихся при таких непрерывных преобразованиях, как скручивание, растяжение, сжатие, изгибание и других, не связанных с нарушением целостности.

Удивительной и неповторимой особенностью такой ленты является то, что он имеет всего одну сторону и край и никак не связаны с ее расположением в пространстве.

Лист Мебиуса является топологическим, то есть непрерывным объектом с простейшей односторонней поверхностью с границей в обычном Евклидовом пространстве (3-мерном), где возможно из одной точки такой поверхности, не пересекая края, попасть в любую другую.Кто и когда ее открыл?

Такой непростой объект, как лента Мебиуса, был и открыт довольно необычно.

Прежде всего отметим, что два математика, абсолютно не связанные между собой в исследованиях, открыли ее одновременно – в 1858 году. Еще одним интересным фактом является то, что оба этих ученых в разное время являлись учениками одного и того же великого математика — Иоганна Карла Фридриха Гаусса. Так, вплоть до 1858 года считалось, что любая поверхность обязана иметь две стороны.

Однако Иоганн Бенедикт Листинг и Август Фердинанд Мебиус открыли геометрический объект, у которого была всего одна сторона, и описывают его свойства. Лента была названа в честь Мебиуса, а вот отцом-основателем «резиновой геометрии» топологи считают Листинга и его труд «Предварительные исследования по топологии».

Свойства

Ленте Мебиуса присущи следующие свойства, не меняющиеся при ее сжимании, разрезании вдоль или сминании:

1. Наличие одной стороны. А. Мебиус в своем труде «Об объеме многогранников» описал геометрическую поверхность, названную затем в его честь, обладающую всего одной стороной.

Проверить это довольно просто: берем ленту или лист Мебиуса и стараемся закрасить внутреннюю сторону одним цветом, а внешнюю – другим.

Не суть важно, в каком месте и направлении было начато окрашивание, вся фигура будет закрашена одним цветом.

2. Непрерывность выражается в том, что любую точку этой геометрической фигуры можно соединить с любой другой ее точкой, не пересекая границы поверхности Мебиуса.

3. Связность, или двухмерность, заключается в том, что при разрезании ленты вдоль, из нее не получится несколько разных фигур, и она остается цельной.

4. В ней отсутствует такое важное свойство, как ориентированность. Это значит, что человек, идущий по этой фигуре, вернется к началу своего пути, но только в зеркальном отражении самого себя. Таким образом, бесконечная лента Мебиуса может привести к вечному путешествию.

5. Особый хроматический номер, показывающий, какое максимально возможное число областей на поверхности Мебиуса, можно создать так, чтобы у любой из них была общая граница со всеми другими. Лента Мебиуса имеет хроматический номер – 6, а вот кольцо из бумаги – 5.

Научное использование

Сегодня лист Мебиуса и его свойства широко применяются в науке, служа основой для построения новых гипотез и теорий, проведения исследований и экспериментов, создания новых механизмов и устройств.

Так, существует гипотеза, согласно которой Вселенная — это огромнейшая петля Мебиуса. Косвенно об этом свидетельствует и теория относительности Эйнштейна, согласно которой даже полетевший прямо корабль может вернуться в ту же временную и пространственную точку, откуда стартовал.

Другая теория рассматривает ДНК как часть поверхности Мебиуса, что объясняет сложности с прочтением и расшифровкой генетического кода. Кроме всего прочего, такая структура дает логичное объяснение биологической смерти – замкнутая на самой себе спираль приводит к самоуничтожению объекта.

По мнению физиков, многие оптические законы основываются на свойствах листа Мебиуса. Так, например, зеркальное отражение — это особый перенос во времени и человек видит перед собой своего зеркального двойника.

Реализация на практике

В различных отраслях промышленности лента Мебиуса применение нашла уже давно. Великий изобретатель Никола Тесла в начале века изобрел резистор Мебиуса, состоящий из двух скрученных на 1800 проводящих поверхностей, который может противостоять потоку электрического тока без создания электромагнитных помех.

На основе исследований поверхности ленты Мебиуса и ее свойств было создано множество устройств и приборов. Ее форму повторяют при создании полосы ленточного конвейера и красящей ленты в печатных устройствах, абразивных ремней для заточки инструментов и автоматической передачи. Это позволяет значительно увеличить срок их службы, так как изнашивание происходит более равномерно.

Не так давно удивительные особенности листа Мебиуса позволили создать пружину, которая, в отличие от обычных, срабатывающих в противоположном направлении, не меняет направление срабатывания. Применяется она в стабилизаторе рулевого привода штурвала, обеспечивая возврат рулевого колеса в исходное положение.

Кроме того, знак лента Мебиуса используется в разнообразных торговых марках и логотипах. Самый известный из них — это международный символ вторичной переработки. Его проставляют на упаковках товаров либо пригодных для последующей переработки, либо сделанных из переработанных ресурсов.

Источник творческого вдохновения

Лента Мебиуса и ее свойства легли в основу творчества многих художников, писателей, скульпторов и кинематографистов. Самый известный художник, использовавший в таких своих работах, как «Лента Мебиуса II (Красные муравьи)», «Всадники» и «Узлы», ленту и ее особенности — Мауриц Корнелис Эшер.

Листы Мебиуса, или, как их еще называют, поверхности минимальной энергии, стали источником вдохновения для математических художников и скульпторов, например, Брента Коллинза или Макса Билла. Самый известный памятник ленте Мебиуса установлен у входа в вашингтонский Музей истории и техники.

Русские художники также не остались в стороне от этой темы и создали свои работы. Скульптуры «Лента Мебиуса» установлены в Москве и Екатеринбурге.

Литература и топология

Необычные свойства поверхностей Мебиуса вдохновили многих писателей на создание фантастических и сюрреалистических произведений. Петля Мебиуса играет важную роль в романе Р. Желязны «Двери в песке» и служит как средство перемещения сквозь пространство и время для главного героя романа «Некроскоп» Б. Ламли.

Фигурирует она и в рассказах «Стена темноты» Артура Кларка, «На ленте Мебиуса» М. Клифтона и «Лист Мебиус» А. Дж. Дейча. По мотивам последнего режиссером Густаво Москера был снята фантастическая кинокартина «Мебиус».

Делаем сами, своими руками!

Если вас заинтересовала лента Мебиуса, как сделать ее модель, вам подскажет небольшая инструкция:

1. Для изготовления ее модели потребуются:

– лист обычной бумаги;

– ножницы;

– линейка.

2. Отрезаем полосу от листа бумаги так, чтобы ее ширина была в 5-6 раз меньше длины.

3. Полученную бумажную полоску раскладываем на ровной поверхности. Один конец придерживаем рукой, а другой поворачиваем на 1800 так, чтобы полоса перекрутилась и изнанка стала лицевой стороной.

4. Склеиваем концы перекрученной полосы так, как показано на рисунке.

Лента Мебиуса готова.

5. Возьмите ручку или маркер и посередине ленты начните рисовать дорожку. Если вы сделали все правильно, то вернетесь в ту же точку, откуда начали чертить линию.

Для того чтобы получить наглядное подтверждение тому, что лента Мебиуса — односторонний объект, карандашом или ручкой попробуйте закрасить какую-либо ее сторону. Через некоторое время вы увидите, что закрасили ее полностью.опубликовано econet.ru

[источники]источники

Техника — молодёжи 1984-09, страница 65

Источник: https://masterok.livejournal.com/3761488.html

Лента Мёбиуса: один из самых необычных объектов с очень странными свойствами

Трехмерная лента мебиуса. Кто и когда ее открыл? Лента Мёбиуса в архитектуре

Одним из самых простых и одновременно самых сложных и странных объектов является лента Мёбиуса. Несмотря на всю неординарность данной фигуры её с легкостью можно сделать самостоятельно и провести все эксперименты, которые описываются в этой статье.

Источник изображения: ozgesoysal.com

Лента Мёбиуса – простейшая неориентируемая поверхность, которая является односторонней в трёхмерном пространстве. Её часто называют ещё поверхностью Мёбиуса и относят к непрерывным (топологическим) объектам.

Согласно легенде, немецкий астроном, математик и механик Август Фердинанд Мёбиус открыл этот объект после того, как служанка, работающая в его доме, сшила тканевую ленту в кольцо, перевернув по невнимательности один из ее концов. Увидев результат, вместо того, чтобы отругать незадачливую девушку Мёбиус произнес: «Ай да, Марта! Девочка не так уж глупа. Ведь это же односторонняя кольцевая поверхность. У ленточки нет изнанки!»

Август Фердинанд Мёбиус. Источник изображения: wikimedia.org

Изучив свойства ленты, Мёбиус написал о ней статью и отправил в Парижскую академию наук, но ее публикации так и не дождался. Его материалы были опубликованы уже после смерти математика, а необычная топологическая поверхность была названа в его честь.

Сделать ленту Мёбиуса очень просто: возьмите ленту ABCD, а после сверните таким образом, чтобы точки A и D соединились с B и C.

Изготовление Ленты Мёбиуса. Источник изображения: dollartree.info

Получается обычная на первый взгляд фигура, которая имеет очень интересные свойства.

Односторонность

Все мы привыкли к тому, что у поверхностей всех объектов, с которыми мы сталкиваемся в реальном мире (например, листок бумаги) две стороны. Но поверхность ленты Мёбиуса односторонняя. Это легко можно проверить путем закрашивания ленты. Если взять карандаш и начать окрашивать ленту с любого места, не переворачивая, то в конечном итоге, лента окажется полностью закрашена.

«Если кто-то попробует раскрасить только одну сторону поверхности ленты Мёбиуса, то пусть лучше сразу погрузит ее в ведро с краской», Р. Курант и Г. Роббинс, «Что такое математика?»

Поверхность ленты Мёбиуса непрерывная

Непрерывность поверхности ленты Мёбиуса. Источник изображения:

Это легко проверяется следующим образом: если в любом месте
на ленте поставить точку, то ее можно соединить с любой другой точкой на поверхности ленты, не пресекая края. Таким образом, получается, что поверхность этого объекта непрерывная.

У ленты Мёбиуса нет ориентированности

Если бы вы смогли пройти через всю ленту Мёбиуса, то в момент возвращения в начальную точку путешествия вы бы превратились в зеркальное отражение самого себя.

Если ленту разрезать вдоль посередине, то в таком случае получается всего одна лента, хотя логика говорит о том, что их должно быть две, а если разрезать, отступив от края на треть ширины ленты, то получится уже два кольца сцепленных вместе – маленькое и большое. Сделав затем продольный разрез малого кольца посередине, в итоге, получим два переплетенных кольца одинаковых в размере, но разных по ширине.

Разрезание ленты Мёбиуса. Источник изображения:wikimedia.org

Практическое использование ленты Мёбиуса

Уже существует довольно много изобретений, основанных на свойствах этого необычного топологического объекта.

Например, красящая лента в матричных принтерах, скрученная в ленту Мёбиуса, служит гораздо дольше, поскольку износ в этом случае происходит равномерно по всей ее поверхности.

А скрученные в форме этого геометрического объекта лопасти кухонного миксера или бетоносмесителя снижают энергозатраты на 20%, и при этом качество полученной смеси улучшается.

Существует гипотеза, что полимер ДНК, представляющий собой двойную спираль, является фрагментом ленты Мёбиуса и по этой причине код ДНК так труден для расшифровки и понимания.

Некоторые физики, говорят о том, что оптические эффекты основаны на тех же свойствах, которыми обладает этот парадоксальный объект, так наше отражение в зеркале – это частный случай, одного из свойств ленты Мёбиуса.

Еще одна гипотеза, связанная этим математическим объектом – это то, что сама наша Вселенная, возможно, замкнута в такую ленту и у нее есть своя зеркальная копия. Поскольку, если все время двигаться в одном направлении по ленте Мёбиуса, то, в конце концов, окажемся в начальной точке нашего путешествия, но уже в своем зеркальном отображении.

Загадочная бутылка Клейна

На основе ленты Мёбиуса существует ещё одна удивительная фигура – бутылка Клейна. Она представляет с собой бутылку, у которой на дне есть отверстие. Горлышко бутылки удлинено и загнуто, проходя в одну из стенок самой бутылке.

Бутылка Клейна. Источник изображения:www.ideegreen.it

Такую фигуру невозможно воспроизвести в обычном трехмерном пространстве, ведь горлышко не должно касаться стенки бутылки и соединено с отверстием в ее дне. Таким образом, получается поверхность, которая имеет всего одну сторону. Бутылка Клейна и лента Мёбиуса до сих пор привлекает внимание учёных, а также писателей.

А. Дейч в одном из своих рассказов писал о том, как однажды в Нью-Йоркском метро пути пересеклись и весь метрополитен стал напоминать ленту Мёбиуса, а электрички, идущие по путям, стали пропадать, вновь появляясь, только спустя несколько месяцев.

В книге Александра Митча «Игра в поддавки» герои попадают в пространство, которое напоминает бутылку Клейна.

Мир до сих пор остаётся для нас огромной загадкой, и кто знает, какие ещё причуды пространства откроют учёные в ближайшем будущем.

Источник: https://zen.yandex.ru/media/id/5af18cff8c8be36795a8504e/5c0cca8d44c73500ae939655

Лента Мёбиуса и её сюрпризы

Трехмерная лента мебиуса. Кто и когда ее открыл? Лента Мёбиуса в архитектуре

Вот он – автор удивительной ленты (или листа) Мебиуса!

Немецкий математик и астроном-теоретик Август Фердинанд Мёбиус (1790-1868) – ученик великого Гаусса, известный геометр, профессор Лейпцигского университета, директор обсерватории. Долгие годы преподавания, долгие годы работы – обычная жизнь профессора. 

И вот надо же, это   случилось под конец жизни! Пришла удивительная идея … это был самое значительное событие в его жизни! К сожалению, он так и не успел  оценить  значимость своего  изобретения.  Статья о знаменитой ленте Мебиуса была опубликована посмертно.

Существуют две легенды открытия односторонней поверхности.

По первой легенде, знаменитую ленту Мебиуса изобрел вовсе не сам Август Фердинанд Мебиус, немецкий астроном и математик, а его горничная, которая в силу невезения неправильно прострочила воротничок рубашки ученого, таким образом войдя в историю.

По второй легенде, открыть свой “лист” Мёбиусу помогла служанка, сшившая однажды неправильно концы ленты. Ну, что же, может быть, может быть! Ведь Исаак Ньютон тоже тянул с открытием всемирного закона тяготения, пока ему на голову не свалилось яблоко.

 
 

Как  же называют ленту Мебиуса (иначе лист Мебиуса или петлю Мебиуса) математики?

На языке математики – это топологический объект, простейшая односторонняя поверхность с краем  в обычном  трёхмерном  Евклидовом  пространстве, где можно попасть из одной точки  этой поверхности в любую другую, не пересекая края.

Достаточно сложное определение!

Поэтому удобнее просто рассмотреть  ленту Мебиуса поближе.  Берем бумажную полоску,  перекручиваем  полоску  в пол-оборота  поперек  (на 180 градусов) и склеиваем концы.

В другой раз “мама бы по головке за такую работу не погладила”!  Но, на этот раз вы правы! Она должна быть перекрученным кольцом.

Ставим в каком-нибудь месте на полоске точку фломастером. А теперь прочерчиваем вдоль  всей нашей   ленты линию, пока вам не встретится вновь ваша точка. Вам нигде не пришлось переходить через край – это и называется односторонней поверхностью.

Посмотрите,  как интересно проходит прочерченная вами  линия: она то внутри кольца, то снаружи! А теперь измерьте длину этой линии  – от  точки до точки. 

Удивляетесь? 
Она оказывается в два раза длиннее  первоначальной полоски бумаги! 

Так и должно быть, ведь у  вас в руках  лента Мебиуса! А у ленты Мебиуса есть только одна сторона,  и мы опять скажем – это  односторонняя поверхность с  краем.

А если по этой черте заставить ползти, не сворачивая,  муравья,  то вы получите копию картины художника Мориса Эшера. 
Бедный муравей на бесконечной дороге!  

А можно сделать две немного разные ленты Мебиуса: у одной перекручивать перед склейкой полоску по часовой стрелке, а у другой – против часовой стрелки. Так различаются  правая и левая ленты  Мебиуса.

А теперь интересные сюрпризыс лентой Мебиуса:

1.  Разрежьте ленту Мебиуса вкруговую по центральной линии.

Не бойтесь, она не развалится на две части! Лента развернется  в длинную замкнутую ленту, закрученную  вдвое больше, чем первоначальная.

Почему лента Мебиуса при таком разрезе не распадается на отдельные части?
Разрез не касался края  ленты, поэтому после разреза край  (а значит и вся полоска бумаги) останется целым куском. 

2.  Полученную после первого опыта  ленту Мебиуса  (закрученную вдвое больше, чем первоначальная,  т.е. на 360 градусов) вновь разрежьте по ее центральной линии.  

Что получится? 

У вас в руках  окажутся теперь две одинаковые, но  сцепленные между собой  ленты Мебиуса.

 

3. Сделайте новую ленту Мебиуса,  но перед склейкой поверните ее не один раз, а три  раза (не на 180 градусов, а на 540). Затем разрежьте ее вдоль  центральной линии.

Что получилось?
У вас должна получиться замкнутая лента, завитая в узел трилистника, т.е. в  простой узел с тремя самопересечениями. 

4. Если вы сделаете ленту Мебиуса с еще большим числом полуоборотов перед склейкой, то получатся неожиданные и удивительные  фигуры, называемые  парадромными  кольцами.

5. Если разрезать  ленту Мебиуса,  не посередине, а отступая от края приблизительно на треть её ширины, то получатся две сцепленные  ленты, одна — более короткая лента Мебиуса, и  другая — длинная лента  Мебиуса  с двумя полуоборотами.

Посмотрите, как это можно сделать на практике:

Близкой к ленте Мебиуса  односторонней поверхностью является бутылка Клейна.
Интересно, что бутылка Клейна может быть получена путём склеивания двух лент Мебиуса по краям. Однако, в обычном трёхмерном евклидовом пространстве сделать это, не создавая самопересечения, невозможно.

Есть еще один интересный объект, связанный с лентой Мебиуса. Это резистор Мебиуса.

Резистор Мебиуса, как объект изобретения, запатентован в США. Это электрический элемент – трехслойная полоса, в которой два проводящих слоя разделены слоем диэлектрика. Полоса скручена на 180 градусов и образует ленту Мебиуса. Такой резистор не имеет собственной индуктивности, и поэтому не создает магнитных помех, однако, обладает существенной паразитной емкостью.

В истории нередко бывают случаи, когда одна идея приходит в головы одновременно нескольким изобретателям. Так случилось и с лентой Мебиуса. В том же 1858 году идея ленты пришла и к другому ученому – Иоганну Листингу. Он дал название науке, изучающей непрерывность, — топология.

А первенство в открытии топологического объекта – ленты досталось Августу Мебиусу.

Мы незаметно встречаем ленту Мебиуса в разных устройствах: это и красящие ленты в матричных принтерах, и ременные передачи, шлифовальные устройства, ленточные конвееры и многие другие.

В этом случае срок службы изделия увеличивается, т.к. уменьшается изнашиваемость. А в системах непрерывной записи применение ленты Мебиуса позволяет вдвое увеличить время записи на одну пленку.

Таинственная лента Мебиуса всегда будоражила умы писателей, художников и скульпторов. 

Рисунок ленты Мебиуса используется в графике. Вспомните, например, эмблему знаменитой серии научно-популярных книг “Библиотечка “Квант” или международный символ переработки.

 

Широко известны рисунки с изображениями ленты Мебиуса голландского художника Мориса Эшера.

Улицы многих городов украшают скульптуры на тему ленты Мебиуса. Архитекторы используют ленту Мебиуса в новаторских формах. Так, например, выглядит невероятный проект новой библиотеки в Астане (Казахстан).

И все было бы просто, если бы все-таки не некоторая необычность этого

загадочного изобретения!

Источник: https://stasy-egorova.pldetstva.edusite.ru/p70aa1.html

Trosjurid
Добавить комментарий